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There are two types of errors associated with SVD verification in Halo2- the first error
due to the numpy computation algorithm (or any other algorithm for computing SVD;
see [Bla99a, Bla99b]) and the second due to the quantization of the fixed point chip. In
this note, we will relate these errors to the tolerance parameter for the zk circuit.

We will use the following norms for a n ×m matrix X,

∥X∥2 ∶= max
∥v∥2≤1

∥Xv∥2 (1)

∥X∥m ∶= max
i,j

∣Xij ∣. (2)

It should be noted that ∥X∥2 is the operator norm (also called the spectral norm)- one of
the most commonly used matrix norm. It is in particular a unitarily invariant and submul-
tiplicative norm [Bha97, Section 4.2]. ∥X∥m is the element wise maximum norm, which is
neither unitarily invariant nor submultiplicative but turns out to be easy to implement in
Halo2, and nicely captures the error due to quantization. Also, it should be noted that for
all matrices X,

∥X∥m ≤ ∥X∥2 ≤
√
nm ∥X∥m . (3)

Let the n ×m matrix M be provided in the fixed point quantization. Suppose, the
mathematical (perfect) SVD for this matrix is given by

M = UΣV (4)

where matrices U and V are orthogonal and Σ is diagonal. Suppose further that numpy
(or any other library) outputs the matrices Û , Σ̂ and V̂ as the SVD of M , which satisfy
the guarantees

∥M − Û Σ̂V̂ ∥
2
≤ εsvd (5)

∥Σ − Σ̂∥
2
≤ εsvd (6)

∥1−Û ÛT ∥
2
≤ εU (7)

∥1−V̂ V̂ T ∥
2
≤ εU . (8)
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and that Û and V̂ are such that ∥Û∥
m
≤ 1 and ∥V̂ ∥

m
≤ 1.

The error bounds given in [Bla99b] appear in a similar form. We do not necessarily need
the second condition above, a similar bound is implied by the other bounds, but we include
it to avoid unnecessary calculations. From [Bla99b], we get the following “rough” values
for the values of (εsvd, εU) for the SVD function of numpy

εsvd = ∥M∥2 p(m,n)ε (9)

εU = max{m,n}ε (10)

where ε = 2−53 ≈ 1.1 × 10−16 is the precision of double arithmetic and p(m,n) is “modestly
growing function” of m and n(1).

We will write the fixed-point quantized versions of these using a q subscript, as Ûq, Σ̂q

and V̂q. For a precision of P bits for the fixed-point chip, the quantized version of a matrix
X is given by

(Xq)ij = 2−P ⌊2PXij + 0.5⌋ (11)

so that,

∥Xq −X∥m ≤ 2−(P+1). (12)

In our zk-circuits, we test the following three conditions for the quantizations of the
SVD matrices

∥1−ÛqÛ
T
q ∥

m
≤ errU (13)

∥1−V̂qV̂ T
q ∥

m
≤ errU (14)

∥ÛqΣ̂q −MV̂ T
q ∥

m
≤ errsvd. (15)

In this note, we will relate the above errors with εsvd and εU .

First, let’s see how we can bound the corresponding errors for the numpy produced
matrices. The conditions on the unitaries Û and V̂ in Eq. 7 and 8 are already of the above
form. In order to bound the the third condition we will need bounds for ∥Û∥

2
, ∥V̂ ∥

2
and

∥Σ̂∥
2
. For ∥Û∥

2
we have

∣1 − ∥Û∥2
2
∣ ≤ ∥1−Û ÛT ∥

2
≤ εU

⇒
√

1 − εU ≤ ∥Û∥
2
≤
√

1 + εU . (16)

(1) [Bla99c] states that in practice p(m,n) is linear in m and/ or n, but one can only prove bounds, which
are cubic O(n3). Since, in a cryptographic protocol, we are in an adversarial setting, one needs to be very
careful of what an honest algorithm for the prover can prove. We leave this for future work and simply use
the average observed error during numpy’s SVD for our demo.
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Similarly,

√
1 − εU ≤ ∥V̂ ∥

2
≤
√

1 + εU . (17)

For ∥Σ̂∥
2
, we have

∥Σ̂∥
2
≤ ∥M∥2 + εsvd. (18)

For the third condition, we have

∥Û Σ̂ −MV̂ T ∥
m
≤ ∥Û Σ̂ −MV̂ T ∥

2

≤ ∥Û Σ̂ − Û Σ̂V̂ V̂ T ∥
2
+ ∥Û Σ̂V̂ V̂ T −MV̂ T ∥

2

≤ ∥Û∥
2
∥Σ̂∥

2
∥1−V̂ V̂ T ∥

2
+ ∥V̂ ∥

2
∥Û Σ̂V̂ −M∥

2

≤
√

1 + εU(∥M∥2 + εsvd)εU + εsvd
√

1 + εU (19)

Now, we will simply use the following Lemma along with the triangle inequality for
norms to bound errors above for the quantized matrices.

Lemma 0.1. For an n×k matrix A and a k×m matrix B and their quantizations Aq and
Bq, we have

∥AB −AqBq∥m ≤ 2−(P+1)k (∥A∥m + ∥B∥m + 2−(P+1)) (20)

Proof. We have

∥AB −AqBq∥m = max
ij

∣
k

∑
l=1

(AilBlj − (Aq)il(Bq)lj)∣

≤ max
ij

{
k

∑
l=1

∣AilBlj − (Aq)ilBlj ∣ + ∣(Aq)ilBlj − (Aq)il(Bq)lj ∣}

≤
k

∑
l=1

max
ij

∣Ail − (Aq)il∣ ∣Blj ∣ +max
ij

∣Blj − (Bq)lj ∣ ∣(Aq)il∣

≤ 2−(P+1)k (∥A∥m + ∥B∥m + 2−(P+1))

For the quantized matrices, we have

∥1−ÛqÛ
T
q ∥

m
≤ ∥1−Û ÛT ∥

m
+ ∥ÛqÛ

T
q − Û ÛT ∥

m

≤ εU + 2−(P+1)n (2(1 + εU) + 2−(P+1)) (21)
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where we use the fact that ∥Û∥
m
≤ 1 + εU . Similarly, for the unitary V̂q, we have

∥1−V̂qV̂ T
q ∥

m
≤ εU + 2−(P+1)m (2(1 + εU) + 2−(P+1)) . (22)

Finally, for the bound

∥ÛqΣ̂q −MV̂ T
q ∥

m
≤ ∥ÛqΣ̂q − Û Σ̂∥

m
+ ∥Û Σ̂ −MV̂ T ∥

m
+ ∥MV̂ T −MV̂ T

q ∥
m

≤ 2−(P+1)n (1 + ∥M∥2 + εsvd + 2−(P+1)) + ∥MV̂ T −MV̂ T
q ∥

2
+ ∥Û Σ̂ −MV̂ T ∥

m

≤ 2−(P+1)n (1 + ∥M∥2 + εsvd + 2−(P+1)) + ∥M∥2 ∥V̂ T − V̂ T
q ∥

2
+ ∥Û Σ̂ −MV̂ T ∥

m

≤ 2−(P+1)n (1 + ∥M∥2 + εsvd + 2−(P+1)) + ∥M∥2m2−(P+1) + ∥Û Σ̂ −MV̂ T ∥
m

≤ 2−(P+1)n (1 + ∥M∥2 + εsvd + 2−(P+1)) + ∥M∥2m2−(P+1)

+
√

1 + εU(∥M∥2 + εsvd)εU +
√

1 + εU εsvd.
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